On the use of uncertainties from the characterization to the computation of dispersion envelope of poro-elastic media

Julia Rodenas, F. Chevillotte, F.X. Bécot and L. Jaouen
contact@matelys.com
Wednesday, 6th December 2017

Thanks to Stephen Hillenburg and Matthew Edwards
Outline

1 Introduction
 - Introduction
 - Overview of the used characterisation method

2 Uncertainties and standard deviations
 - Extraction of relevant information from measurements
 - Global standard deviation on JCAL parameters
 - Single average curve versus enveloppe

3 Envelope estimation with complete computation
 - Method principle
 - Computation cost

4 Sampling method
 - Method principle
 - β influence
 - Automatic sampling method
 - Sampling method calculation cost

5 Conclusion
1. **Introduction**
 - Introduction
 - Overview of the used characterisation method

2. **Uncertainties and standard deviations**
 - Extraction of relevant information from measurements
 - Global standard deviation on JCAL parameters
 - Single average curve versus envelope

3. **Envelope estimation with complete computation**
 - Method principle
 - Computation cost

4. **Sampling method**
 - Method principle
 - β influence
 - Automatic sampling method
 - Sampling method calculation cost

5. **Conclusion**
Introduction

- The modelling of the acoustical behaviour of a poro-elastic material usually requires **11 parameters** (6 JCAL + 4 Elastic + thickness)
- Each parameter is measured or characterized with a given uncertainty
- Several samples per material \rightarrow **standard deviations** for each parameter
- The idea of this work is to propose a **methodology** to take into account both measurement uncertainties and standard deviations between samples to simulate envelopes in place of a single average curve.
- 2 methods are investigated: the complete method and the sampling method.
• The modelling of the acoustical behaviour of a poro-elastic material usually requires **11 parameters** (6 JCAL + 4 Elastic + thickness)

• **Each parameter** is measured or characterized with a given uncertainty

• Several samples per material \(\rightarrow\) **standard deviations** for each parameter

• The idea of this work is to propose a **methodology** to take into account both measurement uncertainties and standard deviations between samples to **simulate envelopes** in place of a single average curve.

• 2 methods are investigated: the **complete method** and the **sampling method**.
• The modelling of the acoustical behaviour of a poro-elastic material usually requires **11 parameters** (6 JCAL + 4 Elastic + thickness)

• **Each parameter** is measured or characterized with a given uncertainty

• Several samples per material \rightarrow **standard deviations** for each parameter

• The idea of this work is to propose a **methodology** to take into account both measurement uncertainties and standard deviations between samples to simulate envelopes in place of a single average curve.

• 2 methods are investigated: the **complete method** and the **sampling method**.
The modelling of the acoustical behaviour of a poro-elastic material usually requires **11 parameters** (6 JCAL + 4 Elastic + thickness).

Each parameter is measured or characterized with a given uncertainty.

Several samples per material → **standard deviations** for each parameter.

The idea of this work is to propose a **methodology** to take into account both measurement uncertainties and standard deviations between samples to simulate envelopes in place of a single average curve.

2 methods are investigated: the **complete method** and the **sampling method**.
Introduction

- The modelling of the acoustical behaviour of a poro-elastic material usually requires **11 parameters** (6 JCAL + 4 Elastic + thickness)
- **Each parameter** is measured or characterized with a given uncertainty
- Several samples per material \rightarrow **standard deviations** for each parameter
- The idea of this work is to propose a **methodology** to take into account both measurement uncertainties and standard deviations between samples **to simulate envelopes** in place of a single average curve.
- 2 methods are investigated: the **complete method** and the **sampling method**.
Overview of the used characterisation method

Direct methods
- Air flow resistivity measurement
 - ISO 9053
- Porosity measurement
 - Beranek, Salissou & Panneton

Indirect methods: (Audible range) Analytical inversion
- for porous materials: Olny & Panneton, from measurement of ρ_{eq} and K_{eq}
- for perf. plates & fabrics: Jaouen & Bécot, from measurement of Z_s
Overview of the used characterisation method

Direct methods

- Air flow resistivity measurement
 - ISO 9053
- Porosity measurement
 - Beranek, Salissou & Panneton

Indirect methods: (Audible range) Analytical inversion

- for porous materials: Olny & Panneton, from measurement of ρ_{eq} and K_{eq}
- for perf. plates & fabrics: Jaouen & Bécot, from measurement of Z_s
Static air flow resistivity

- ISO 9053
Open porosity

Beranek et al. 1942, further modified by Champoux, Stinson and Daigle 1991

Salissou & Panneton

[Diagram of a setup with labeled parts such as Valve, Air reservoir, Differential pressure transducer, Piston, Material sample, and compartments labeled M_1, M_2, M_3, M_4.]
Impedance tube setups for measurement of ρ_{eq} et K_{eq}

- 2 load method: Utsuno et al.
- 3 mic. method: Iwase et al.
- 4 mic. method: Song & Bolton
Analytical inversion for porous materials: α_∞, Λ, Λ', k'_0

From measurement of ρ_{eq} and K_{eq}, separate assessment of the visco-inertial and thermal effects following the Johnson-Champoux-Allard-Lafarge model

\[
\tilde{\rho}_{eq} = \frac{\alpha_\infty \rho_0}{\phi} \left[1 - j \frac{\sigma \phi}{\omega \rho_0 \alpha_\infty} \sqrt{1 + j \frac{4 \alpha_\infty^2 \eta \rho_0 \omega}{\sigma^2 \Lambda^2 \phi^2}} \right],
\]

or

\[
\tilde{\rho}_{eq} = \tilde{A} + j \tilde{B}
\]

\[
\tilde{K}_{eq} = \frac{\gamma P_0 / \phi}{\gamma - (\gamma - 1) \left[1 - j \frac{\phi \kappa}{k'_0 C_p \rho_0 \omega} \sqrt{1 + j \frac{4 k'_0^2 C_p \rho_0 \omega}{\kappa \Lambda'^2 \phi^2}} \right]^{-1}},
\]

or

\[
\tilde{K}_{eq} = \tilde{C} + j \tilde{D}
\]

\[
\alpha_\infty = \frac{\phi}{\rho_0} \left(\text{Re}(\tilde{\rho}_{eq}) - \sqrt{[\text{Im}(\tilde{\rho}_{eq})]^2 - \frac{\sigma^2}{\omega^2}} \right)
\]

\[
\text{and}
\quad \Lambda = \frac{\alpha_\infty}{\phi} \sqrt{\frac{2 \eta \rho_0}{\omega \text{Im}(\tilde{\rho}_{eq})} \left[\frac{\alpha_\infty \rho_0 / \phi - \text{Re}(\tilde{\rho}_{eq})}{\text{Im}(\tilde{\rho}_{eq})} \right]}
\]

\[
\quad \text{and}
\quad \Lambda' = 2 \sqrt{\frac{\kappa}{C_p \rho_0 \omega} \left\{ -\text{Im} \left(\frac{\gamma P_0 - \phi \tilde{K}_{eq}}{\gamma P_0 - \gamma \phi \tilde{K}_{eq}} \right)^2 \right\}^{-1}}
\]
1. Introduction
 - Introduction
 - Overview of the used characterisation method

2. Uncertainties and standard deviations
 - Extraction of relevant information from measurements
 - Global standard deviation on JCAL parameters
 - Single average curve versus enveloppe

3. Envelope estimation with complete computation
 - Method principle
 - Computation cost

4. Sampling method
 - Method principle
 - β influence
 - Automatic sampling method
 - Sampling method calculation cost

5. Conclusion
Static error estimation from parameters’ spectra

*Mode: the value in a given dataset that appears most frequently

Viscous characteristic length (\(\mu m\)): standard deviation estimation from a **large frequency interval**

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>56</td>
<td>22</td>
</tr>
</tbody>
</table>

Viscous characteristic length (\(\mu m\)): standard deviation estimation from a **small frequency interval**

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>42</td>
<td>1</td>
</tr>
</tbody>
</table>
Measurement uncertainties and standard deviations between samples

- **Common method**:
 \[\forall i \in [1, n], \ i \text{ sample index, and } N_i \text{ the frequency number, } \]
 \[std_m = \sqrt{\frac{\sum_i^n (\bar{x}_i - \bar{X}_m)^2}{n-1}} \text{ with } \bar{X}_m = \frac{1}{n} \sum_1^n \bar{x}_i \]
 and on each sample \(std_i = \sqrt{\frac{\sum_i^{N_i} (x_i - \bar{x}_i)^2}{N_i-1}} \)

- **Exact expression**:
 \[std = \sqrt{\frac{\sum_1^n \sum_i^{N_i} (x_i - \bar{X})^2}{\sum_1^n N_i-1}} \text{ with } \bar{X} = \frac{1}{\sum_i N_i} \sum_1^n \sum_i^{N_i} x_i \]

- **Proposed method**:
 Hypothesis: \(N_1 = N_2 = \ldots = N_n = N \) and \(N \) big enough
 \[std \approx \sqrt{\frac{\sum_1^n \sum_i^{N_i} (x_i - \bar{x}_i)^2}{n}} + std_m^2 \]
Measurement uncertainties and standard deviations between samples

- **Common method**:
 \[\forall i \in [1, n] \ , \ i \text{ sample index, and } N_i \text{ the frequency number,} \]
 \[\text{std}_m = \sqrt{\frac{\sum_{i=1}^{n}(\bar{x}_i - \bar{X}_m)^2}{n-1}} \text{ with } \bar{X}_m = \frac{1}{n} \sum_{i=1}^{n} \bar{x}_i \]

 and on each sample \[\text{std}_i = \sqrt{\frac{\sum_{i=1}^{N_i}(x_i - \bar{x}_i)^2}{N_i-1}} \]

- **Exact expression**:
 \[\text{std} = \sqrt{\frac{\sum_{i=1}^{n} \sum_{i=1}^{N_i}(x_i - \bar{X})^2}{\sum_{i=1}^{n} N_i - 1}} \text{ with } \bar{X} = \frac{1}{\sum_{i=1}^{n} N_i} \sum_{i=1}^{n} \sum_{i=1}^{N_i} x_i \]

- **Proposed method**:
 Hypothesis: \(N_1 = N_2 = ... = N_n = N \) and \(N \) big enough
 \[\text{std} \approx \sqrt{\frac{\sum_{i=1}^{n} \text{std}_i^2}{n}} + \text{std}_m^2 \]

\[\text{julia.rodenas@matelys.com} \]
Measurement uncertainties and standard deviations between samples

- **Common method**:
 \[\forall i \in [1, n], \ i \text{ sample index, and } N_i \text{ the frequency number}, \]
 \[std_m = \sqrt{\frac{\sum_{i=1}^{n}(\bar{x}_i - \bar{X}_m)^2}{n-1}} \text{ with } \bar{X}_m = \frac{1}{n} \sum_{i=1}^{n} \bar{x}_i \]
 and on each sample \[std_i = \sqrt{\frac{\sum_{i=1}^{N_i}(x_i - \bar{x}_i)^2}{N_i-1}} \]

- **Exact expression**:
 \[std = \sqrt{\frac{\sum_{i=1}^{n} \sum_{i=1}^{N_i}(x_i - \bar{X})^2}{\sum_{i=1}^{n} N_i - 1}} \text{ with } \bar{X} = \frac{1}{\sum_{i=1}^{n} N_i} \sum_{i=1}^{n} \sum_{i=1}^{N_i} x_i \]

- **Proposed method**:
 Hypothesis: \[N_1 = N_2 = ... = N_n = N \text{ and } N \text{ big enough} \]
 \[std \approx \sqrt{\frac{\sum_{i=1}^{n} std_i^2}{n}} + std_m^2 \]
Measurement uncertainties and standard deviations between samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Common method</th>
<th>Proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_{\text{sample1}}) = 142 ± 40(\mu m)</td>
<td>142 ± 0(\mu m)</td>
<td>142 ± 51(\mu m)</td>
</tr>
<tr>
<td>(\Lambda_{\text{sample2}}) = 142 ± 60(\mu m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison between the common and the proposed method: Example for the viscous characteristic lengths of 2 samples.
Foam modeled with **JCAL parameters** given by:
- thickness = 30.00 ± 0.22 mm,
- $\phi = 0.99 \pm 0.01$,
- $\sigma = 109\ 200 \pm 41\ 000$ N.s.m$^{-4}$,
- $\Lambda = 13 \pm 5$ μm,
- $\Lambda' = 105 \pm 19$ μm,
- $\alpha_\infty = 1.13 \pm 0.13$

- A simulated envelope would be more appropriate than the simulation with mean values.
- Other indicators as absorption or transmission under a diffused field could be investigated.
Foam modeled with **JCAL parameters** given by:

- thickness = 30.00 ± 0.22 mm,
- $\phi = 0.99 \pm 0.01$,
- $\sigma = 109\,200 \pm 41\,000$ N.s.m$^{-4}$,
- $\Lambda = 13 \pm 5$ μm,
- $\Lambda' = 105 \pm 19$ μm,
- $\alpha_\infty = 1.13 \pm 0.13$

A simulated envelope would be more appropriate than the simulation with mean values.

Other indicators as absorption or transmission under a diffused field could be investigated.
• Foam modeled with **JCAL parameters** given by:
 thickness = 30.00 ± 0.22 mm,
 $\phi = 0.99 \pm 0.01$,
 $\sigma = 109 \ 200 \pm 41 \ 000 \ \text{N.s.m}^{-4}$,
 $\Lambda = 13 \pm 5 \ \mu \text{m}$,
 $\Lambda' = 105 \pm 19 \ \mu \text{m}$,
 $\alpha_\infty = 1.13 \pm 0.13$

• A simulated envelope would be more appropriate than the simulation with mean values.

• Other indicators as absorption or transmission under a diffused field could be investigated.
1. Introduction
 - Introduction
 - Overview of the used characterisation method

2. Uncertainties and standard deviations
 - Extraction of relevant information from measurements
 - Global standard deviation on JCAL parameters
 - Single average curve versus envelope

3. Envelope estimation with complete computation
 - Method principle
 - Computation cost

4. Sampling method
 - Method principle
 - β influence
 - Automatic sampling method
 - Sampling method calculation cost

5. Conclusion
Method principle

- **N parameters** - Example for JCAL/elastic model ⇒ 11 parameters
- 2 possibilities per parameter, minimum and maximum values - Example for \(\Lambda = 13 \pm 5 \, \mu m \) ⇒ \(\Lambda_{min} = 8 \, \mu m \) and \(\Lambda_{max} = 18 \, \mu m \)
- All combinations are computed - Example for JCAL/elastic model ⇒ \(2^{11} = 2048 \) cases to compute
- All these simulations lead to a simulated envelope but can be costly
Method principle

- **N parameters** - Example for JCAL/elastic model ⇒ 11 parameters
- 2 possibilities per parameter, **minimum and maximum values** - Example for \(\Lambda = 13 \pm 5 \, \mu m \) ⇒ \(\Lambda_{min} = 8 \, \mu m \) and \(\Lambda_{max} = 18 \, \mu m \)
- All combinations are computed - Example for JCAL/elastic model ⇒ \(2^{11} = 2048 \) cases to compute
- All these simulations lead to a simulated envelope but can be costly
Method principle

- **N parameters** - Example for JCAL/elastic model ⇒ 11 parameters
- 2 possibilities per parameter, minimum and maximum values - Example for $\Lambda = 13 \pm 5 \, \mu m$ ⇒ $\Lambda_{\text{min}} = 8 \, \mu m$ and $\Lambda_{\text{max}} = 18 \, \mu m$
- **All combinations** are computed - Example for JCAL/elastic model ⇒ $2^{11} = 2048$ cases to compute
- All these simulations lead to a simulated envelope but can be costly
Method principle

- **N parameters** - Example for JCAL/elastic model \Rightarrow 11 parameters
- 2 possibilities per parameter, **minimum and maximum values** - Example for $\Lambda = 13 \pm 5 \, \mu m \Rightarrow \Lambda_{min} = 8 \, \mu m$ and $\Lambda_{max} = 18 \, \mu m$
- **All combinations** are computed - Example for JCAL/elastic model $\Rightarrow 2^{11} = 2048$ cases to compute
- All these simulations lead to a **simulated envelope** but can be costly
3 types of quantities:

- the sound absorption coefficient under a diffuse field excitation α_{DF},
- the transmission loss under a diffuse field excitation TL_{DF}
- the surface impedance under a plane wave at normal incidence Z_{NI}.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Nb of simul.</th>
<th>α_{DF}</th>
<th>TL_{DF}</th>
<th>Z_{NI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sample</td>
<td>1</td>
<td>3.15 s</td>
<td>14.49 s</td>
<td>1.23 s</td>
</tr>
<tr>
<td>1 envelope</td>
<td>2 048</td>
<td>1.78 h</td>
<td>8.25 h</td>
<td>0.70 h</td>
</tr>
<tr>
<td>800 envelopes</td>
<td>1 638 400</td>
<td>1 434 h</td>
<td>6 595 h</td>
<td>560 h</td>
</tr>
</tbody>
</table>

Complete computation cost: Computational time may be prohibitive for systematic envelope evaluation for a large number of samples.

Computer capacities: processor Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz and 8 GB of RAM
Computation cost

3 types of quantities:

- the sound absorption coefficient under a diffuse field excitation α_{DF},
- the transmission loss under a diffuse field excitation TL_{DF}
- the surface impedance under a plane wave at normal incidence Z_{NI}.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Nb of simul.</th>
<th>α_{DF}</th>
<th>TL_{DF}</th>
<th>Z_{NI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sample</td>
<td>1</td>
<td>3.15 s</td>
<td>14.49 s</td>
<td>1.23 s</td>
</tr>
<tr>
<td>1 envelope</td>
<td>2 048</td>
<td>1.78 h</td>
<td>8.25 h</td>
<td>0.70 h</td>
</tr>
<tr>
<td>800 envelopes</td>
<td>1 638 400</td>
<td>1 434 h</td>
<td>6 595 h</td>
<td>560 h</td>
</tr>
</tbody>
</table>

Complete computation cost: Computational time may be prohibitive for systematic envelope evaluation for a large number of samples.

Computer capacities: processor Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz and 8 GB of RAM
1. Introduction
 - Introduction
 - Overview of the used characterisation method

2. Uncertainties and standard deviations
 - Extraction of relevant information from measurements
 - Global standard deviation on JCAL parameters
 - Single average curve versus envelope

3. Envelope estimation with complete computation
 - Method principle
 - Computation cost

4. Sampling method
 - Method principle
 - β influence
 - Automatic sampling method
 - Sampling method calculation cost

5. Conclusion
Method principle

- For each sample, parameters are **randomly chosen in a range** defined by:
 \[\forall P \text{ parameter} \quad | P \in [\bar{X}_{\text{param}} - \beta \times \text{std}_{\text{param}}, \bar{X}_{\text{param}} + \beta \times \text{std}_{\text{param}}] \]
 with \(\beta \) a coefficient \(\beta \in [1, 3] \)

- **Dismiss unrealistic samples** - Example: a sample cannot have a negative resistivity even if its resistivity equals 40 000 \(\pm \) 50 000 N\(\cdot \)s\(\cdot \)m\(^{-4} \).

- Experience showed that **20 samples** are enough to simulate one envelope.

- Once the set of all samples are generated, simulations are launched for each sample.

- All these simulations give a simulated envelope
Method principle

- For each sample, parameters are **randomly chosen in a range** defined by:
 \[P \in [\bar{X}_{\text{param}} - \beta \times \text{std}_{\text{param}}, \bar{X}_{\text{param}} + \beta \times \text{std}_{\text{param}}] \]
 with \(\beta \) a coefficient \(\beta \in [1, 3] \)

- **Dismiss unrealistic samples** - Example: a sample cannot have a negative resistivity even if its resistivity equals 40 000 ± 50 000 N.s.m\(^{-4}\).

- Experience showed that **20 samples** are enough to simulate one envelope,

- Once the set of all samples are generated, simulations are launched for each sample.

- All these simulations give a **simulated envelope**
Method principle

- For each sample, parameters are \textit{randomly chosen in a range} defined by:

 \[P \in [\bar{X}_{param} - \beta \times \text{std}_{param}, \bar{X}_{param} + \beta \times \text{std}_{param}] \]

 with \(\beta \) a coefficient \(\beta \in [1, 3] \)

- \textbf{Dismiss unrealistic samples} - Example: a sample cannot have a negative resistivity even if its resistivity equals 40 000 ± 50 000 \(N.s.m^{-4} \).

- Experience showed that \textbf{20 samples} are enough to simulate one envelope,

- Once the set of all samples are generated, simulations are launched for each sample.

- All these simulations give a \textit{simulated envelope}
Method principle

- For each sample, parameters are **randomly chosen in a range** defined by:
 \[
 \forall P \text{ parameter} \mid P \in [\bar{X}_{\text{param}} - \beta \times \text{std}_{\text{param}}, \bar{X}_{\text{param}} + \beta \times \text{std}_{\text{param}}]
 \]
 with \(\beta \) a coefficient \(\beta \in [1, 3] \)

- **Dismiss unrealistic samples** - Example: a sample cannot have a negative resistivity even if its resistivity equals 40 000 ± 50 000 \(N.s.m^{-4} \).

- Experience showed that **20 samples** are enough to simulate one envelope,

- Once the set of all samples are generated, simulations are launched for each sample.

- **All these simulations give a simulated envelope**
Method principle

- For each sample, parameters are randomly chosen in a range defined by:
 \[P \in [\bar{X}_{param} - \beta \times std_{param}, \bar{X}_{param} + \beta \times std_{param}] \]
 with \(\beta \) a coefficient \(\beta \in [1, 3] \)

- **Dismiss unrealistic samples** - Example: a sample cannot have a negative resistivity even if its resistivity equals 40 000 ± 50 000 N.s.m\(^{-4}\).

- Experience showed that 20 samples are enough to simulate one envelope,

- Once the set of all samples are generated, simulations are launched for each sample.

- All these simulations give a simulated envelope
$P = \bar{X}_{\text{param}} \pm \beta \times \text{std}_{\text{param}}$
$P = \bar{X}_{param} \pm \beta \times std_{param}$

$\beta = 1$
\(\beta \) influence

\[P = \bar{X}_{\text{param}} \pm \beta \times \text{std}_{\text{param}} \]

\(\beta = 1 \)

\(\beta = 2 \)
\[P = \bar{X}_{param} \pm \beta \times \text{std}_{param} \]

- \(\beta = 1 \)
- \(\beta = 2 \)
- \(\beta = 3 \)
Automatic sampling method principle:

- An **iterative procedure** is used to find the best β,
- The algorithm is stopped when the difference between the generated population and the measured one is less than 5% for both the mean value and the standard deviation.
- The selection of samples is done before running computations so its time cost is negligible.
- Tested on a database filled with 800 materials.
- The sampling method generates envelopes similar to the complete method.
Automatic sampling method principle:

- An **iterative procedure** is used to find the best β,
- the algorithm is stopped when the **difference** between the generated population and the measured one is **less than 5% for both the mean value and the standard deviation**.
- the selection of samples is done before running computations so its **time cost is negligible**.
- **Tested** on a database filled with 800 materials.
- The sampling method generates envelopes similar to the complete method.
Automatic sampling method principle:

- An **iterative procedure** is used to find the best β,
- the algorithm is stopped when the **difference** between the generated population and the measured one is **less than 5% for both the mean value and the standard deviation**.
- the selection of samples is done before running computations so its **time cost is negligible**.
- **Tested** on a database filled with 800 materials.
- The sampling method generates envelopes **similar** to the complete method.
Automatic sampling method principle:

- An **iterative procedure** is used to find the best β.
- the algorithm is stopped when the **difference** between the generated population and the measured one is less than 5% for both the mean value and the standard deviation.
- the selection of samples is done before running computations so its **time cost is negligible**.
- **Tested** on a database filled with 800 materials.
- The sampling method generates envelopes **similar** to the complete method.
Automatic sampling method principle:

- An **iterative procedure** is used to find the best β,
- the algorithm is stopped when the difference between the generated population and the measured one is less than 5% for both the mean value and the standard deviation.
- the selection of samples is done before running computations so its time cost is negligible.
- **Tested** on a database filled with 800 materials.
- The sampling method generates envelopes **similar** to the complete method.
The sampling method enables to **divide the calculation cost** of the complete computation **by a factor 100**.
1 Introduction
 ■ Introduction
 ■ Overview of the used characterisation method

2 Uncertainties and standard deviations
 ■ Extraction of relevant information from measurements
 ■ Global standard deviation on JCAL parameters
 ■ Single average curve versus envelope

3 Envelope estimation with complete computation
 ■ Method principle
 ■ Computation cost

4 Sampling method
 ■ Method principle
 ■ β influence
 ■ Automatic sampling method
 ■ Sampling method calculation cost

5 Conclusion
• A methodology has been proposed to take into account for both measurement uncertainties and standard deviation between samples in order to efficiently simulate envelopes in place of a single average curve.

• Similar envelopes are obtained using two different methods: a complete method which uses minimum and maximum values for each parameter, and a sampling method using only few representative samples.

• The sampling method enables to divide the calculation cost of the complete computation by a factor 100.

• This method could be used with other types of simulation.
Conclusion

• A methodology has been proposed to take into account for both measurement uncertainties and standard deviation between samples in order to efficiently simulate envelopes in place of a single average curve.

• **Similar envelopes** are obtained using two different methods: a complete method which uses minimum and maximum values for each parameter, and a sampling method using only few representative samples.

• The sampling method enables to divide the calculation cost of the complete computation by a factor 100.

• This method could be used with other types of simulation.
Conclusion

- A methodology has been proposed to take into account for both measurement uncertainties and standard deviation between samples in order to efficiently simulate envelopes in place of a single average curve.

- Similar envelopes are obtained using two different methods: a complete method which uses minimum and maximum values for each parameter, and a sampling method using only few representative samples.

- The sampling method enables to divide the calculation cost of the complete computation by a factor 100.

- This method could be used with other types of simulation.
Conclusion

- A methodology has been proposed to take into account for both measurement uncertainties and standard deviation between samples in order to efficiently **simulate envelopes in place of a single average curve**.

- **Similar envelopes** are obtained using two different methods: a complete method which uses minimum and maximum values for each parameter, and a sampling method using only few representative samples.

- The sampling method enables to **divide the calculation cost** of the complete computation **by a factor 100**.

- This method could be used with other types of simulation.