Nonlocal Maxwellian Theory of Sound Propagation in Fluid-Saturated Rigid-Framed Porous Media*

* Lafarge & Nemati, Wave Motion (2013)

Checking the theory* in a simple 2D periodic geometry:

(local and Bragg resonances)

Navid Nemati
Denis Lafarge
Outline

- Introduction

Nonlocal Maxwellian theory
 - Macroscopic equations
 - Upscaling procedures

- Validation
Introduction: a macroscopic theory

A macroscopic theory describing sound propagation through porous media

- Unbounded saturated porous media: fluid-solid
 - Solid is rigid
 - Fluid is viscothermal

- **Local theory** (Classical Equivalent-Fluid)
 - Wavelength $\lambda \gg L$
 - Microscopic scale: the fluid is considered to be incompressible $\Rightarrow \nabla \cdot \mathbf{v} = 0$
 - It gives only the first normal mode
 - Local theory is not complete...

Generalization: Nonlocal theory

- Temporal dispersion + spatial dispersion
- $\nabla \cdot \mathbf{v} \neq 0$
- Nonasymptotic homogenization
- Beyond the long-wavelength limit
Viscothermal fluid equations for a small perturbation + interface conditions

- In the viscothermal fluid

 Mass balance: \(\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{v} = 0 \)

 Momentum balance: \(\frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \eta \nabla^2 \mathbf{v} + (\zeta + \frac{1}{3} \eta) \nabla (\nabla \cdot \mathbf{v}) \)

 Energy balance: \(\rho_0 c_p \frac{\partial T}{\partial t} = \beta_0 T_0 \frac{\partial p}{\partial t} + \kappa \nabla^2 T \)

 State: \(\gamma \chi_0 \rho = b + \beta_0 \tau \)

- At the fluid-solid interface

 \(\sigma = 0, \quad \tau = 0 \)

 \(\epsilon \approx 0.01 \ll 1 \)
The « Lorentz » fields are the average of microscopic fields:

\[E = \langle e \rangle \quad B = \langle b \rangle \]

\[E \times H = \text{electromagnetic part of energy current density} \]
Theory: macroscopic acoustic equations

Maxwellian acoustic equations

Field equations

\[
\frac{\partial B}{\partial t} + \nabla \cdot \mathbf{V} = 0
\]

\[
\frac{\partial \mathbf{D}}{\partial t} = -\nabla H
\]

Constitutive relations

\[
\mathbf{D} = \hat{\rho} \mathbf{V}
\]

\[
H = \hat{\chi}^{-1} B
\]

- **Temporal dispersion (Local)**

\[
\mathbf{D}(t, r) = \int_{-\infty}^{t} dt' \rho(t - t') \mathbf{V}(t', r) \Rightarrow \mathbf{D}(\omega, r) = \rho(\omega) \mathbf{V}(\omega, r)
\]

\[
H(t, r) = \int_{-\infty}^{t} dt' \chi^{-1}(t - t') B(t', r) \Rightarrow H(\omega, r) = \chi^{-1}(\omega) B(\omega, r)
\]

- **Temporal dispersion + Spatial dispersion (Nonlocal)**

\[
\mathbf{D}(t, r) = \int_{-\infty}^{t} dt' \int d\mathbf{r}' \rho(t - t', \mathbf{r} - \mathbf{r}') \mathbf{V}(t', \mathbf{r}') \Rightarrow \mathbf{D}(\omega, \mathbf{k}) = \rho(\omega, \mathbf{k}) \mathbf{V}(\omega, \mathbf{k})
\]

\[
H(t, r) = \int_{-\infty}^{t} dt' \int d\mathbf{r}' \chi^{-1}(t - t', \mathbf{r} - \mathbf{r}') B(t', \mathbf{r}') \Rightarrow H(\omega, \mathbf{k}) = \chi^{-1}(\omega, \mathbf{k}) B(\omega, \mathbf{k})
\]

\[
\mathbf{VH} = \text{acoustic part of energy current density} = \langle p \mathbf{V} \rangle
\]

\[
\mathbf{V} = \langle \mathbf{v} \rangle \quad \mathbf{B} = \langle \mathbf{b} \rangle
\]
In the long-wavelength regime $\lambda \gg L$ and in the limit $\nabla \cdot \mathbf{v} = 0$:

- Spatial nonlocality is simply ignored, the time nonlocality is not completely described.
- Time nonlocality originates only in dissipative processes that occur with delays.
- If we remove the losses and assume local behavior ($\nabla \cdot \mathbf{v} = 0$ at the pore scale) \implies Response of the fluid to an excitation should be instantaneous.
- $\rho(t - t') = \rho_0 \alpha_\infty \delta(t - t')$ and $\chi^{-1}(t - t') = \chi^{-1}_0 \delta(t - t')$
- There is no temporal dispersion ...

The dispersion is wholly linked to the losses!
Upscaling procedures

- Averaging in nonlocal theory is ensemble averaging
- **Periodic medium**: ensemble of random translations \rightarrow Cell average
 - $\mathbf{V} = \langle \mathbf{v} \rangle$, $\mathbf{B} = \langle \mathbf{b} \rangle \equiv \langle \rho' / \rho_0 \rangle$

Local

- Macroscopic pressure $P = \langle p \rangle$
- Equivalent Fluid

Nonlocal

- Macroscopic pressure: $H \langle \mathbf{v} \rangle = \langle p \mathbf{v} \rangle$
- Generalized Equivalent Fluid

\[
\begin{array}{ll}
\rho(\omega), & \chi(\omega) \\
\text{One wave} & \\
\end{array}
\]

\[
\begin{array}{ll}
\rho(\omega, \mathbf{k}), & \chi(\omega, \mathbf{k}) \\
\text{Several waves} & \\
\end{array}
\]
FORCE-CURRENT ANALOGY

\[\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \]

\[\frac{\partial \mathbf{D}}{\partial t} = \nabla \times \mathbf{H} + \mathbf{J} \]

\[\mathbf{D} = \epsilon \mathbf{E} \]

\[\mathbf{H} = \mu^{-1} \mathbf{B} \]

\[\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \mathbf{V} = 0 \]

\[\frac{\partial \mathbf{D}}{\partial t} = -\nabla \mathbf{H} + \mathbf{F} = -\nabla \varphi \]

\[\mathbf{D} = \rho \mathbf{V} \]

\[\mathbf{H} = \chi^{-1} \mathbf{B} \]
Upscaling procedures

- **In the visco-thermal fluid**

 \[
 \frac{\partial b}{\partial t} + \nabla \cdot \mathbf{v} = 0
 \]

 \[
 \rho_0 \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \eta \nabla^2 \mathbf{v} + \left(\zeta + \frac{1}{3} \eta \right) \nabla (\nabla \cdot \mathbf{v}) - \nabla (P e^{ikx-i\omega t})
 \]

 Added for determination of density

 \[
 \rho_0 c_p \frac{\partial \tau}{\partial t} = \beta_0 T_0 \frac{\partial p}{\partial t} + \kappa \nabla^2 \tau
 \]

 Added for determination of bulk modulus

 \[
 \gamma \chi_0 p = b + \beta_0 \tau
 \]

- **On the fluid-solid interface:**

 \[\mathbf{v} = 0, \quad \tau = 0\]

 Effective density

 \[
 \rho(\omega, k) = \frac{k (P + P(\omega, k))}{\omega \langle v(\omega, k, r) \rangle}
 \]

 where \(P \langle \mathbf{v} \rangle = \langle p \mathbf{v} \rangle \)

 Effective modulus

 \[
 \chi^{-1}(\omega, k) = \frac{P(\omega, k) + P}{\langle b(\omega, k, r) \rangle}
 \]

Lafarge & Nemati, Wave Motion (2013)

Direct consequences of the FORCE-CURRENT analogy!
Wavenumbers, effective densities and compressibilities

- For each frequency, the complex wavenumbers, constants of the medium, are the solution of the nonlocal dispersion equation:

\[\rho(\omega, k) \chi(\omega, k) \omega^2 = k^2 \implies k_n(\omega), \ n = 1, 2, \ldots \]

\[\rho(\omega, k_n(\omega)) = \rho_n(\omega), \text{ and } \chi(\omega, k_n(\omega)) = \chi_n(\omega) \]

Homogenized medium

- Free homogeneous fluid

\[\rho_0 \chi_0 c_0^2 = 1 \]

- Local Effective Fluid

\[\rho(\omega) \chi(\omega) c^2(\omega) = 1 \]

- Nonlocal Effective Fluid

\[\rho_1(\omega) \chi_1(\omega) c_1^2(\omega) = 1 \]

\[\rho_2(\omega) \chi_2(\omega) c_2^2(\omega) = 1 \]

\[\ldots \]

\[\rho_n(\omega) \chi_n(\omega) c_n^2(\omega) = 1 \]

\[\ldots \]
A SIMPLE GEOMETRY FOR QUASI ANALYTICAL VERIFICATION:

Bloch modes:

$L = 2.0 \text{cm}, \quad d = 1.0 \text{cm}, \quad h_1 = 1.0 \text{cm}, \quad h_2 = 9.86 \text{cm}$

Nonlocal theory:
Solving through Newton scheme the nonlocal dispersion equation

Direct Bloch calculation, 1st Brillouin Zone

$\frac{h_2}{h_1} = 10$
Higher orders modes: they remain in the first Brillouin zone. No difference between Bloch and Nonlocal calculations.

Generalisation of the notion of tortuosity. mode 1.
Generalisation of the notion of compressibility mode 1
Generalisation of the notion of tortuosity

Generalisation of the notion of compressibility

mode 2

mode 2
Conclusions

- Establishment of a general theory allowing for spatial dispersion and full and untruncated temporal dispersion
- The role of the velocity divergence (or constant pressure) is clarified
- Metamaterial (metafluid) behavior is a natural consequence of a more general theory taking into account the full nonlocal effects
- Effective properties of phononic crystals can be described in Bragg regime
- Generalization to bounded medium and arbitrary direction of propagation
- Generalization to elastic solid and composite medium